
3.3 Combining Gaussian variables

Suppose X is a datum drawn from a Gaussian distribution of population standard devi-
ation σx, and similarly for Y . The distribution of Z = X + Y follows very easily from
the convolution of the two Gaussians: - especially if we remember the Convolution The-
orem, which tells us that the Fourier transform of a convolution is just the product of
the transforms of the parts of the convolution (with appropriate complex conjugates). In
probability and statistics, Fourier transforms are called “characteristic functions” some-
times.
The Fourier transform of the Gaussian is
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so it is another Gaussian, of width equal to the reciprocal of the width of the original.
This is a feature of Fourier transforms.
Because of our definition of the transform, it is equal to unity at k = 0, reflecting the
normalization of a probability distribution.
Let’s call the two distributions in our problem gx and gy - the convolution result says
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so, using upper case for the transforms, the convolution theorem says
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again, correctly normalized. We can invert this transform again easily to get
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This tells us that, exactly for the Gaussian, we can add errors in quadrature. For other
distributions this familiar result is approximate only.
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